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Normal modes at small cubes and rectangular particles
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Battelle-Institut e.V., 6 Frankfurt 90, Postfach 900160, Frankfurt/Main, Germany

Received 4 August 1975, in final form 16 December 1975

Abstract. The normal electromagnetic modes at small cubes and rectangular paral-
lelepipeds are discussed. An expansion in terms of external multipoles is used; this allows
an analytical evaluation of all elements of the interaction matrix. A cluster point of
eigenvalues arises at the eigenvalue (@) + €ex{®) =0 of a half-space. Only a few terms
are needed to obtain convergence of the isolated eigenvalues which give rise to optical
absorption peaks. The maximum dipole absorption peak moves from the bulk eigenvalue
€n(@)=0 to the monopole eigenvalue €, (w)=~ with increasing extension of the
parallelepiped in the direction of the dipole. '

L Introduction

Small crystals having diameters of only a few angstroms usually exhibit a polyhedral
habit determined by the lattice structure. It is important to know their normal
eketric modes in order to understand a number of physical problems such as optical
absorption, van der Waals attraction, surface energy, physisorption, chemisorption,
ad catalysis. Optical absorption at small cubic or rectangular particles has been
observed by Martin (1971), Bryskin et al (1971), and Genzel and Martin (1972). The
vander Waals energy between two particles is given by the change in free energy of their
wrmal electric modes due to their mutual interaction (van Kampen et al 1968,
Langbein 1974). Physisorption and chemisorption depend on the ability of the normal
mdes to augment adhesion by virtually or really changing the density of surface
Elect_rons (Krupp 1967, Grimley 1967, 1968, Gersten and Tzoar 1974). Similarly, by
poviding a favourable steric environment and the necessary activation energy, the
trmal electric modes may strongly enhance a catalytic process.
Normal electric modes at spheres, cylinders, and slabs have been investigated by
Exglman and Ruppin (1966), Fuchs et al (1966), Fuchs and Kliewer (1968), and
an and Ruppin (1968). Ruppin and Englman (1970) have published a review.
the other hand, only a few results are known on the normal modes at cubes. A paper
Yan Gelder et al (1972) is based on an expansion of the normal modes in terms of
235“%1 harmonics and a numerical evaluation of the resultant interaction terms,
mo\_ved by the solution of the secular problem for the eigenvalues of the interaction
iy A different approach has been adopted by Fuchs (1974). He calculates the
m‘a.nzatlon charges at a set of uniformly distributed points on the surface self-
nSIS.ten.ﬂy’ ie. in such a manner that the resultant electric field gives rise to the
tion charges. In addition to the eigenfrequencies of the normal modes, Fuchs
fes the dipole components which determine the strength of the absorption peaks.
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628 D Langbein

In the following we consider a small particle of arbitrary geometry. We eXpand the
external potential of a normal electric mode in ferms of spherical multipoles, We then
calculate the polarization charges induced on the surface of the particle ang ip turn
expand the resultant electric potential in terms of spherical multipoles. We obtay an
interaction matrix which is a priori diagonal in the case of spheres; its elements canbe
calculated analytically if rectangular particles are considered. In contrast to the
procedure used by van Gelder et al, we do not need to integrate the matrix elements
numerically, which would appear problematic in view of the magnification of eITors
involved in the subsequent eigenvalue problem.

We consider all normal modes including not only those exhibiting a dipole
component. In the case of a cube there are twenty independent sets of normal modes
which belong to ten different symmetry characters (Hund 1956). In the case of 3
rectangular particle there are eight symmetry characters. We find a cluster point of
eigenfrequencies of the normal modes at the eigenfrequency of the normal modes at 2
half-space. This is because modes exhibiting a high number of zeros can hardly notice
the exact shape of the particle. At some distance from the cluster point we find rapid
convergence of the eigenfrequencies. Only a few multipoles are needed to derive the
main absorption peaks.

The different symmetry characters entail significant deviations in the position of the
eigenfrequencies. We obtain a general shift of the eigenfrequencies towards the bulk
eigenfrequency if the electric field along a pair of diagonal planes of the cube vanishes.
The eigenfrequencies lie altogether between the half-space frequency and the bulk
frequency if the electric field vanishes along all diagonal planes. The eigenfrequencies
reported by van Gelder et al (1972) give rise to some doubt, while those reported by
Fuchs (1974) are basically correct on the side of the cluster point distant from the bulk
frequency, but show poor accuracy between the half-space frequency and the bulk

frequency.

2. Secular system

Letus consider a small particle of arbitrary geometry and dielectric permeability eim(w_L
which is embedded in a medium of dielectric permeability eex(w). A normal electric
mode of the particle under consideration is obtained if the polarization charge i“.du@d
by the electric potential V(r) in turn causes the potential V(r). Using the constitutrve
equations for the electric field and displacement

th

E(r)=-VV(r); D(r)=¢(w, r)E(r)
and requiring vanishing divergence of D(r) we find
V2V(r)+Vine(w,r) . VV(r)=0.

We obtain a local polarization charge if €(w, r) varies spatially. Integrating equatio
by means of the Green function |r—s|~* yields

V(r)=@m)™" st}r—s["iv Ine(w,s) . VV(s)

. . . ) i in
Since e{w, r) is assumed constant internally and externally, we ﬁnfi that the integra!
equation (3) reduces to a surface integral. Using the surface relation "

Vine.VV=(-Ve ). eVV=_(er —€cn)€ext Vext -

)
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“we obtain
YV =(am)

Su

dslr—s/"'V, Vex(s) (5)
rf

where
Y= eint/ -(eext - Eint) . (6)

tion (5) relates the electric potential V(r) of a normal mode to the normal
component Vi, Vex(r) of the external electric field at the surface. Solving equation &)
for the eigenvalues vy yields the eigenfrequencies of the possible normal modes. Van
Gelder et al transformed equation (5) into a linear secular system by multiplying by
V,Vilr) and integrating over the surface a second time. However, it is more
wovenient to expand the external potential and the Green function directly in terms of
spherical multipoles. We put

Veulr)= Y c(m, p)r™™*VPk (cos 6) explipd)/(m+p)!. ™
mu
Insertion of equatio‘n (7) into equation (5), application of the generating series and the
addition theorem for Legendre functions, and comparison of the coefficients of the
spherical harmonics yields

rimp=(m+)! S el @m ™ |  drrpricos 0) expl-ing)

nv surf
X V,,[r“"“)-P,': (cos 8) exp(ivp)/(n+v)!]. (8)

We have obtained a linear secular system for the eigenvalues y and the eigenvectors
¢(m, ) of the normal modes. The off-diagonal terms of the interaction matrix are
suface integrals over products of spherical multipoles.

Equation (8) can readily be solved in the case of spheres. Thé choice of spherical
multipoles guarantees that the secular matrix (8) is diagonal, and we obtain

y=—(m+1)/2m+1) 9)

Mein(@)+(m + 1 €ex(w) =0. (10)
zg;gthe well known result reported by Frohlich (1949) and by Englman and Ruppin

The electric energy included in the normal modes under investigation is
U=@8m" J’drE.D=(87r)'1 JdreV.(VVV). (11)

gi:pﬁt_ﬁng up the integration in equation (11) into an internal and an external
$ration and applying Gauss’s theorem we find

U=(877)_15intJ‘

dr ‘/intvn ‘/int - (877)—1€ext J’ dr Vexivn Vext- ( 12)
surf : surf

O’nngFo the continuity of V(r) and €V, V(r) the electric energy built up by the normal
(h);llsfo'-lnd tovanish. The normal modes are self-sustaining, i.. the electric energy
L D TMecessary to maintain the electric field externally is compensated by an

&Y gain Internally, where €, (@) <0.
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The present investigations are based on the electrostatic limit, which excludes
effective flow of energy. €,(w)<0 means that the modes under investigatiop an
damped exponentially internally, while the ingoing and outgoing flow of energy cana;el
mutually externally. In this long-wavelength limit no effective absorption is left In
order to find the absorption cross section caused by the normal modes we have 1
borrow from electrodynamics: the absorption cross section in the 10ng~wave1ength limit
is given by the amplitude c(1, 0) of the dipole contribution to Vew(P) according to
equation (7) (Mie 1908, Born and Wolf 1959).

3. Separation

The symmetry of the rectangular parallelepiped implies eight different Symmetry
characters: the normal modes may be even or odd with respect to a reflection at the
three central planes x =0, y =0, and z = 0. Identifying the polar axis of the spherical
multipoles with the z axis of the parallelepiped, we note that only spherical multipoles’
P7.(cos 6) exp(iue) with even or odd degree m and with even or odd order y interact
In addition, it is possible to require '

c(m, —u)==xc(m, p). 13

The resultant eight subdeterminants are conveniently distinguished by the leading
multipoles 1, x, y, z, xy, yz, zx, xyz involved. There is one subdeterminant between
normal modes which transform like the monopole 1, three subdeterminants between
normal modes which transform like the dipoles x, y, z, three subdeterminants between
normal modes which transform like the quadrupoles xy, yz, zx, and one subdeterminant
‘between normal modes which transform like the octupole xyz on application of the
symmetry operations of the parallelepiped.

The symmetry of the cube gives rise to ten different symmetry characters. The
fourfold symmetry around the main axes means that only those spherical multipoles
interact whose orders differ by four. This causes a further separation of each of theeight
determinants obtained in the case of the parallelepiped into two subdeterminants. The
normal modes resulting from the monopole determinant 1 and from the octupole
determinant xyz exhibit the full symmetry of the cube even after this separation. The
threefold symmetry around the space diagonals thus allows a further separation of the
resultant subdeterminants into two. Altogether, we obtain twenty subdeterminans,
which represent ten different symmetry characters. Again distinguishing thg SUbfeteg'
minants by the leading multipoles involved we obtain 1, 2’=x% z Z‘YZ’ (Jg -y)
=227 % 2(P-2; y, y(2P=xY); 7, 2Py xy VR
yz(y*=2%); zx, zx(z%—x%); xyz, xyz(z°—x?), xyz(zz—yz), xyz(x"—Yy ).(y I
(2°~x?). The order of the subdeterminants given here reflects their derivation mt)lfel
those obtained in the presence of the parallelepiped. A semicolon indicates Fhattof
next subdeterminants of the cube are derived from the subsequent subdeterminal
the parallelepiped. (i)

The interaction of spherical multipoles P%(cos 8) exp(ipch) and Pr(cos 0) €xP I-Cd
with even or odd degree m, n and even or odd order u, v only permits an_aq 3:1 '
‘evaluation of all interaction integrals arising in equation (8). The basi¢ IF
underlying this integration is the indefinite integral
1
J.dx J dyr?=z"" sin"l[xy/(xz+zz)1/2(y2+22)1/2] ( -)
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r=xtt y*+z°%. Equation (14)is easily verified by differentiation with respect to
zand y. From equation (14) we obtain all integrals containing a lower power of r by
geans of the reeurrence relation

@2n+1) f dx fdy P =271(d/dz) fdx J‘dy e (15)

The coresponding integrals containing higher powers of r can be written (n > 0)

-1

[n+1) j‘dxjdy "

= i [2DY/2211%12°" x(x* + 2% sinh ™ [y/(x2+ 233
1=0
+y(y*+2%)" sinh'[x/(y>+ 2%}

53 (@R - Dk —1-DY22 K2k —20)1]

1=0 k=I[+1
XzZn—kay[(x2+22)l+(y2+22)l](x2+y2+22)k—l—%
— 2 sin xy/(x*+ 2) Py + 2DV (16)

With the integrals over all relevant powers of the radius r being known, we obtain the
interaction integrais which contain powers of x” and y* in addition, by using the
recurrence relation

21 2n+1

{n+1) de Idy x P2yl = x(d/dx) — (2k +1)] de J‘dy x%y?ly (17)

Eenumber of terms necessary for an explicit representation of the surface integrals (8)
5 generally rather high owing to the number of terms included in the Legendre
plynomials P%(cos #) and PZ(cos #) and the number of terms arising by repeated
Yplication of recurrence relations (15) and (17). Collecting these terms is a typical
mputer task.

4 Convergence

1“°f_der todemonstrate the convergence of the present procedure, in table 1 we give the
‘g terms of the monopole subdeterminant 1 and of the dipole subdeterminant z
m“!“ng in the case of the cube. In setting up the monopole subdeterminant 1 we used
Interdependence of the coefficients ¢(2m, 4u) of multipoles of equal degree 2m

Wording to
3(12,) -G 22 Jeam =0

E,;I;%' > [zm], which results from the threefold symmetry around the space diagonals.
- tote fl'O_m table 1 that the eigenvalue corresponding to the monopole, y=—1, is
te g, ed In egch order of the interaction. y =—1 also represents the eigenvalue of
O0pole in the presence of 2 sphere. However, the monopole mode is now
102 2% pole, 2°-pole, etc. The coupling is strongest in the case of the 2*-pole
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qnd decreases rapidly with increasing degree of the poles. The eigenvalue correspond-
. to the unperturbed dipole P;(cos 8) is y=-2/3, which once more equals the
digenvalue of the dipole in the presence of asphere. The dipole mode is now coupled to
e octupole Ps(cos 8) and to two 2. -poles and thus is shifted towards the monopole
¢igenvalue ~1. The strongest coupling is that to the octupole.

The product of corresponding off-diagonal elements (m, u; n, v) and (n, v; m, u) in
he subdeterminants shown in table 1 is generally smail compared with the product of
the diagonal elements (m, w3 m, w) and (n, v; n, v). This guarantees rapid convergence
and permits perturbation theory to be applied to all isolated eigenvalues. Since the
diagonal elements in all subdeterminants exhibit a cluster point at y = —0-5, which is the

senvalue of the normal modes at a half-space, we expect the convergence of the
igenvalues to improve with increasing distance from the half-space eigenvalue.

The development of the eigenvalue spectrum, if multipoles of increasing degree are
taken into account, is shown in figure 1. The upper part of figure 1 corresponds to the
monopole subdeterminant 1, the lower part to the dipole subdeterminant z. The full
fines at the left represent the eigenvalues of the unperturbed monopole and dipole,
respectively. The unperturbed eigenvalues of the next multipoles to be considered are
mdicated by dotted lines. If the coupling to these multipoles is taken into account, we
obtzin the eigenvalue spectrum shown in the next column, and so on. We find an
mcreasing number of eigenvalues to split off from the cluster point and note a rapid
wnvergence of these isolated levels. In order to obtain the outer dipole levels with
reasonable accuracy, it is sufficient to take into account the nine multipoles (1, 0), (3, 0),
$,0),(5,4),(7,0), (7, 4), (9, 0), (9, 4), and (9, 8). The next inner eigenvalues converge
afisfactorily if the multipoles (11,0), (11,4), (11,8), (13,0), (13,4), (13, 8), and
{13,12) are considered as well. Similar observations are made if the eigenvalues
resulting from the other subdeterminants are considered.

§. Cabes

Infigure 2 we exhibit the complete eigenvalue spectrum of the normal electric modes at
aabe. Multipoles up to degree 13 are taken into account. This means that the secular
dﬁarminants under consideration have orders between two and sixteen. For each set of
flg'?nvalues the symmetry of the respective normal modes and the degeneracy are
:;;?ted' The accuracy of all levels increases with increasing distance from the cluster
¥=-045.
The different symmetry characters entail several corresponding differences in the
elgeﬂva.lue spectra. The non-degenerate normal modes, which behave like 1 and xyz,
st eigenvalues confined to the region —0-5=y =—1. This is also the region of the
“geﬂ"aluf.s found in the case of spheres, which are shown at the right-hand side. From
*Smparison of the level spectra shown at the left and at the right it appears that the
ngm.va_l“es in the case of the cube approach the cluster point according to a reciprocal
s“mli}r to that described by equation (9). The levels resulting from subdeterminant
Bproximately satisfy y=(m+1-6)/(2m +1-6). ,
. Rormal modes: (x%—y3)(y*—2z%)(z*~x%) and xyz(x®—yd(y* - 2% - x?),
bave beep separated from modes 1 and xyz on account of the threefold symmetry
B5< ¢ space diagonals, cause eigenvalues which are confined to the region
~¥S0. These modes show a vanishing electric field along the diagonal planes of
»Le.they are mainly localized within the cube. The principle of equal internal
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Figure 1. Convergence of eigenvalues. (a) monopole subdeterminant 1; (b) dipo
determinant z.

: : . : ielectric
and external electric energy discussed in § 2 means that a small internal di

permeability €;,,(w) is sufficient. cters yield

The normal modes corresponding to the remaining symmetry ?haf?h hetwest
eigenvalues both below and above the cluster point —0-5. We may dlﬁﬂf{gms - oeny
two different groups. The modes behaving like z, xy, and xyz cause similar €18
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spectra; these are slightly shifted towards y=—0-5 if the minimum degree of the
spherical harmonics considered increases. A second set of similar eigenvalye spectra
due to the modes behaving like (x’—y?), z(x*~y?), xy(x2~y?), and xyz(x- s
‘Whereas changing the parity with respect to the middle planesx =0, y =, ; = Omere[)'
results in a small shift of the eigenvalues, a large shift is observed if the parity is changeg
with respect to the diagonal planes x =%y, y==+z, z==x. .

- For reasons outlined in § 2 we judge the strength of the dipole absorption peaks b
the relative amplitude c¢(1, 0) of the dipole Py(cos ). From the rapid COnVergenceoyf
the eigenvalue spectrum shown in figure 1 we conclude that only a few of the outer
eigenvalues can exhibit a dipole contribution worth mentioning. The dipole absorption
peaks at y=—0-793, —0-702, —0-660, —0-363 are found to have the relative weights
0+60,0-10, 0-05, 025, respectively. The remaining relative weight 0-05 is spread over
the rest of eigenvalues. This is illustrated in figure 3.

| v &
I T T ui T 1
-07 -05 -03
Y
L ! L !
-4 -2 -1 -1/2
€int/€ ext

Figuare 3. Dipole absorption peaks.

In table 2 we compare the findings on the dipole modes according to the invest
tions discussed here with those obtained by van Gelder et al (1972) and Fuchs (?97“) X
Van Gelder et al calculate the eigenvalue @, which is related to ¥ acwrd‘flg ©
Y =a/4m—1. Fuchs calculates the eigenvalue ¢, from which we obtain ¥ according ©
y=¢€/(1—¢€). We include the findings based on the nine spherical multipoles {, G)T;S
(9, 8) and those based on the sixteen spherical multipoles (1,0) to (13, 1?). ot
eigenvalues reported by van Gelder et al, which were also obtained by t 'fhm
account the nine spherical multipoles (1, 0) to (9, 8), show poor agreement ¥ ue
results reported by Fuchs and of our own investigations. Itis noted thaton¢ 31353 e
is split off on each side of the cluster point. However, the position of these exgenv}1 uri
less accurate than that resulting from the present procedure if only two SP ihe
multipoles are taken into account. The findings by Fuchs obtained by optimiZté

i very
polarization charge at 57 non-equivalent points on the surface of the cube 2g1%
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Table 2. Comparison of dipole eigenvalues.

van Gelder Fuchs Present paper

etal (1972) (1974)
y=afdw—1 y=¢/(1—¢) (1,0)t0 (9, 8) (1, 0) to (13, 12)
-0-710 —-0-786 —-0-785 -0-793
—0-569 —-0-703 ~0-681 -0-7N2
—0-525 -0-655 -0-637 —0-660
—0-642
-0-519 -0-559 —-0-555 -0-597
-0-566
—-0-507 ) -0-532 —0-527
-0-504 —0-503 cluster point
—0-500 -0-487 -0-477
-0-491 —0-438 -0-473 —0-442
~0-442 -0-296 -0-377 —0-363

well with our own findings in the region y<—0-5; agreement is less satisfactory for
y>-0-3. This suggests that the normal modes which are mainly localized within the
abhe are not sufficiently sensitive to variations in the surface polarization charge.

6. Rectangular parallelepipeds

The transition from a cube to a rectangular parallelepiped implies a systematic variation
ofthe surface integrals in secular system (8). The only integrals which are not changed
are those containing the monopole (0, 0). The diagonal element (0, 0; 0, 0) equals -1,
the ofi-diagonal elements (0, 0; n, v) equal 0. This means that the monopole mode
aways has the eigenvalue y=—1 OT €/ €cxe =—00. The monopole is coupled to the
multipoles, but this does not affect its eigenvalue.

Alldiagonal elements (m, p; m, ) in the secular system (8) are limited to the region
between the value O corresponding to low external fields and the monopole value —1
arresponding to high external fields. For a parallelepiped with extensions X, Y, Z, the
dipole term (1, 0; 1, 0) equals

—(2/m) tan [ Z(X?*+ Y*+Z%)?/XY]. (19)

ltapproaches the value —1 if the extension along the direction of the dipole becomes
large 50 that the energy of the external field must be compensated by the localized
%IgY gain at the small bases of the parallelepiped, and the value O if the extension
Yrmal to the direction of the dipole becomes large so that the total volume contributes
fothe internal energy gain. The quadrupole term (2, 0; 2, 0) equals

L3 XYZIY(XP+ Z)+ 1/ (Y + Z)] 20)
T X+ Y2 +Z%2 '
E?PpmaChes ~1, i the extension of the parallelepiped in one direction becomes much
1 than that in the other directions. :
th increasing degree m we find that the diagonal elements (m, p; m, p) in the

¥alar system (8) approach the limiting value —0-5. The value of the surface integral in
e of 3 half-space is its cluster point for any given extension X, Y, Z of the

-1
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parallelepiped. The shape of the particle under investigation merely affects the rate
the approach to the cluster point. This means that the accuracy of the eigenvaluOf
obtained by means of the procedure discussed here increases with increasing distanm
from the cluster point y=—0-5, but decreases when the shape of the particle bemm:
more irregular.

The explicit eigenvalue spectrum obtained by taking into account all sphericy]
harmonics up to degree 10 is shown in figures 4 to 8. Figure 4 exhibits the sequence
according to which the different spectra have been arranged. We compare parallele.-
pipeds with equal base and increasing height. The parallelepipeds denoted by P1 1o
_P5 have a quadratic base. This sequence represents the transition from a slab to a cbe
and a rod. The indices P6 to P9 and P10 to P12 denote parallelepipeds with the
rectangular bases 0-4, 1 and 0-1, 1, respectively.

In figure 5 we depict the eigenvalues resulting from subdeterminant 1. The
respective normal modes exhibit the full symmetry of the parallelepiped. They are
coupled to the monopole mode, but do not have a monopole component themselves. If
one pair of faces of the parallelepiped is quadratic, they can be subdivided into modes
which acquire a factor +1 or —1 on rotation by 3 around the tetragonal axis. The
eigenvalues corresponding to the symmetry character — 1 are denoted by broken lines.
They can be seen to increase with increasing height Z of the parallelepiped in the
sequence P1 to PS5, whereas the eigenvalues corresponding to the symmetry character

fﬁ@

P11 P12

J@@

7 ﬂ_;

Figure 4. Sequence of parallelepipeds.

P3
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Figure 5. Monopole eigenvalues.

1 have 2 maximum in the case of the cube P3. In the case of the rod P5, the two level
fectra are fully separated. The levels corresponding to —1 lie above y = —0-5, those
Wresponding to +1 lie below y = —0+5. We found a similar separation of level spectra
Sthe case of the cube.
I figure 6 the dipole eigenvalues resulting from subdeterminants x, y, and z are
!hene('i. We have turned the direction of all dipoles to the z direction and have changed
“ Orientation of the parallelepiped accordingly. Within each of the sequences P1 to
D26 t0P9, and P10 to P12 we find a tendency of the eigenvalues to approach ~1 with
%mg beight Z. This agrees with the tendency of the diagonal element (1, 0; 1, 0)
12‘98 to equat.ion (19). However, because of the cluster point at —0-5, the highest
e ®igenvalue is merely shifted from 0 to —0-5 and the lowest dipole eigenvalue is
_,’Y shifted from —0-5 to —1. This shift of eigenvalues with increasing height
me'% less pronounced as the base of the parallelepiped becomes more elongated.
‘nvalue exhibiting maximum dipole absorption strength essentially follows the

th‘;‘"zm of the diagonal element (1, 0; 1, 0), i.e. it moves from 0 to —1 with increasing
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Figure 8. Octupole eigenvalues.

The fact that in the vicinity of the cluster point —0-5 no eigenvalues at all are
obtained for some elongated shapes may be attributed to the slow convergence of th_e
diagonal elements to the cluster point in these cases. If the base of the parallelepipedis
quadratic, i.e. in the sequence P1 to PS5, itis again possible to distinguish betweenmodes
which acquire a factor +1 or —1 on rotation by 27 around the tetragonal axis. The
eigenvalues corresponding to the latter symmetry character have zero dipole absorp-
tion strength. They are essentially octupoles and show a minimum as a functior of the
height Z rather than a monotonic decrease.

The findings obtained for monopole and dipole modes hold in an analogous mani<t
also for quadrupole and octupole modes. The quadrupole eigenvalues regulﬂﬂg f"’“Z’
secular determinants xy, yz, and zx have a tendency to increase with increasing he{ght
of the parallelepiped, as does the quadrupole diagonal element (2, 0;2,0) acc.ordl‘llli ©
equation (20). Roughly, we may consider the quadrupole and octupole eiged ;IJ;
spectra as inversions of the dipole and monopole eigenvalue spectra at the cluster po
—0-5. '

7. Conclusions
elec-
We have presented a rapidly convergent method, which renders the normal ¢

: ) o Iy ter k-
tromagnetic modes at a small rectangular particle within a minimum of'con;P;m puter.
The overall trend of the eigenvalues may even be obtained without using
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Allelements of the interaction matrix between the multipoles under consideration can
be calculated analytically. Although this generally requires a large number of polyno-
mial terms, only a few terms are left in the leading diagonal elements which cause the
main absorption peaks.

All eigenvalues of the normal modes are necessarily confined to the region
0zy=-1 which corresponds to the region 0= €;,,/ €., = —0. The internal and the
external dielectric permeabilities must have opposite signs so that the energy needed to
build up the external electric field is made up by an internal energy gain, or vice versa.
The main dipole absorption peak may be shifted through the full region 0=y =~1 by
changing the extensions of the parallelepiped. A short extension in the direction of the
dipole favours an eigenvalue close to 0. In that case there is relatively little interaction
ft between the polarization charges on the faces normal to the direction of the dipole
«othat changing the sign in some distant regions hardly affects the resulting eigenvalues
and nearly degenerate eigenvalues arise. The main quadrupole eigenvalue in the case of
the upright slab P12 lies very close to the main dipole eigenvalue in the case of the
horizontal slab P1. Similar to the case of spheres we find a cluster point of eigenvalues at
the half-space value ~0-5. However, the eigenvalues close to the cluster point do not
gverise to optical absorption peaks. Their dipole component is generally very small.

The cube is the most probable shape of small rectangular particles. It has the
advantage that it needs the minimum number of spherical harmonics to provide
convergence, and its symmetry allows a further reduction of the resultant secular
determinants. We find only small deviations between the eigenvalue spectra corres~
ponding to the symmetry characters z, xy, and xyz, which again indicates that there is
only little interaction between polarization charges at distant surface regions of the
abe. On the other hand, there arises a strong effect on the eigenvalue spectra if the
normal modes exhibit an additional factor x>—y®. This factor means that the electric
field vanishes along the diagonal planes x ==y, which reduces the energy of the
external multipole fields and shifts the eigenvalue spectra towards 0. If the normal
modes exhibit the factor (x>~ y?)(y*— z%)(z*—x?), i.e. if the electric field vanishes along
dl diagonal planes, we find the eigenvalue spectra fully confined to the region between
the bulk value y = 0 and the half-space value y=—0-5.
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