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A: Math. Gen., vol. 9. NO. 4, 1976. Printed in Great Britain. @ 1976 

flomal modes at small cubes and rectangular particles 

D Langbein 
Battelle-Institut e.V., 6 Frankfurt 90, Postfach 900160, Frankfurt/Main, Germany 

Received 4 August 1975, in final form 16 December 1975 

Abstract. The normal electromagnetic modes at small cubes and rectangular paral- 
lelepipeds are discussed. An expansion in terms of external multipoles is used; this allows 
an analytical evaluation of all elements of the interaction matrix. A cluster point of 
eigenvalues arises at the eigenvalue eint(u) + eJo) = 0 of a half-space. Only a few terms 
are needed to obtain convergence of the isolated eigenvalues which give rise to optical 
absorption peaks. The maximum dipole absorption peak moves from the bulk eigenvalue 
eint(o) = 0 to the monopole eigenvalue emf(@) = --CO with increasing extension of the 
parallelepiped in the direction of the dipole. 

Small crystals having diameters of only a few angstroms usually exhibit a polyhedral 
habit determined by the lattice structure. It is important to know their normal 
electric modes in order to understand a number of physical problems such as optical 
absorption, van der Waals attraction, surface energy, physisorption, chemisorption, 
and catalysis. Optical absorption at small cubic or rectangular particles has been 
Obwed by Martir, (1971), Bryskin et a1 (1971), and Genzel and Martin (1972). The 
Wder Waals energy between two particles is given by the change in free energy of their 
mal electric modes due to their mutual interaction (van Kampen et a1 1968, 
Langbein 1974). Physisorption and chemisorption depend on the ability of the normal 
modes to augment adhesion by virtually or really changing the density of surface 
d*ons (Krupp 1967, Grimley 1967, 1968, Gersten and Tzoar 1974). Similarly, by 
providing a favourable steric environment and the necessary activation energy, the 
Mmal electric modes may strongly enhance a catalytic process. 

N o m d  electric modes at spheres, cylinders, and slabs have been investigated by 
Engl" and Ruppin (1966), Fuchs et a1 (1966), Fuchs and Kliewer (1968), and 
&an and Ruppin (1 968). Ruppin and Englman (1970) have published a review. 
&heother hand, only a few results are known on the normal modes at cubes. A paper 
bvaGelder er a1 (1972) is based on an expansion of the normal modes in terms of 

harmonics and a numerical evaluation of the resultant interaction terms, 
fanowed by the solution of the secular problem for the eigenvalues of the interaction 
m"?. A afferent approach has been adopted by Fuchs (1974). He calculates the 
'?tion charges at a set of uniformly distributed points on the surface self- 
mwntlY, i.e. in such a manner that the resultant electric field gives rise to the 
%tion charges. In addition to the eigenfrequencies of the normal modes, Fuchs 
-tathe dipole components which determine the strength of the absorption peaks. 
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In the following we consider a small particle of arbitrary geometry. We ex.and 
external potential of a normal electric mode in jerms of spherical multipoles. wetben 
calculate the polarization charges induced on the surface of the particle and in turn 
expand the resultant electric potential in terms of spherical multipoles. We obtain an 
interaction matrix which is a priori diagonal in the case of spheres; i& elements be 
calculated analytically if rectangular particles are considered. In anbast to the 
procedure used by van Gelder et al, we do not need to integrate the matrix elemen& 
numerically, which would appear problematic in view of the magnification of emon 
involved in the subsequent eigenvalue problem. 

We consider all normal modes including not only those exhibiting a dipole 
component. In the case of a cube there are twenty independent sets of normal modes 
which belong to ten different symmetry characters (Hund 1956). In the case of a 
rectangular particle there are eight symmetry characters. We find a cluster point of 
eigenfrequencies of the normal modes at the eigenfrequency of the normal modes ata 
half-space. This is because modes exhibiting a high number of zeros can hardly notie 
the exact shape of the particle. At some distance from the cluster point we fmd rapid 
convergence of the eigenfrequencies. Only a few multipoles are needed to derive &e 
main absorption peaks. 

The different symmetry characters entail significant deviations in the positionof the 
eigenfrequencies. We obtain a general shift of the eigenfrequencies towards the bulk 
eigenfrequency if the electric field along a pair of diagonal planes of the cube vanishes. 
The eigenfrequencies lie altogether between the half-space frequency and the bulk 
frequency if the electric field vanishes along all diagonal planes. The eigenfrequencia 
reported by van Gelder er al (1972) give rise to some doubt, while those repofid by 
Fuchs (1974) are basically correct on the side of the cluster point distant from the bulk 
frequency, but show poor accuracy between the half-space frequency and the bulk 
frequency. 

2. Sed=  system 

k t  Us consider a small particle of arbitrary geometry and dielectric permeability Eint('J'!? 

which is embedded in a medium of dielectric permeability eeXt(u). A normal elemc 
mode of the particle under consideration is obtained if the polarization charge hda? 
by the electric potential V(r) in turn causes the potential V(r). Using the u " h v e  
equations for the electric field and displacement 

(1) 

(2) 

E(r)= -VV(r); D(r)  = E ( @ ,  r )E(r)  

and requiring vanishing divergence of D(r) we find 

V2V(r)+VInE(u, r )  . v v ( ~ ) = o .  

We obtain a local polarization charge if E(@, r )  varies spatially. Integratingequation(2) 
by means of the Green function Ir - SI-' yields 

V(r)=(4.rr)-'Ids/r-sl-%'lnc(o,s) .VV(s) (3) 

Since E ( @ ,  r )  is assumed constant internally and externally, we find that the 
equation (3) reduces to a surface integral. Using the surface relation 

(4) v In E.VV=(-V€-l) .€VV=(E~:-E,;:)E,,tVext 
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mtion (5) relates the electric potential V(r) of a normal mode to the normal 
mpnent VnVext(r) of the external electric field at the surface. Solving equation (5) 

eigenvalues y yields the eigenfrequencies of the possible normal modes. Van 
ader et ai transformed equation (5 )  into a linear secular system by multiplying by 
vnvca(r) and integrating over the surface a second time. However, it is more 
convenient to expand the external potential and the Green function directly in terms of 
yhfic.al multiples. We put 

Vext(r) = c(m, p)r-(m+')pE(cos e) exp(ip+)/(m + p)! .  (7) 
mr 

hertion of equation (7) into equation (9, application of the generating series and the 
addition theorem for Legendre functions, and comparison of the coefficients of the 
qherical harmonics yields 

r(ns p) = (m +p)!  1 c(n, v)(47r)-1 j dr r"'P;*(cos e) exp(-id) 
q v  Surf 

XV,[r-(n+l)PL(cos e) exp(iv+)/(n + v)!]. (8) 
Wehave obtained a linear secular system for the eigenvalues y and the eigenvectors 
Chp) of the normal modes. The off-diagonal terms of the interaction matrix are 
nuface integrals over products of spherical multipoles. 

ba t ion  (8) can readily be solved in the case of spheres. The choice of spherical 
m&Pla guarantees that the secular matrix (8) is diagonal, and we obtain 

y = -(m + 1)/(2m + 1) 
01 

(9) 

Wnt(W) + (m + 1)Eext(W) = 0- (10) 
is the well known result reported by Frohlich ( 1949) and by Englman and Ruppin 

The ekctric energy included in the normal modes under investigation is 
(1%). 

U= ( 8 ~ ) - '  I d r  E .  D = (ST)-' dr EV . (VVV). I 
5 j  splitting up the integration in equation (11) into an internal and an external 
mte!Ptim and applying Gauss's theorem we find 

dr VexiVnVext. (12) 

".s to the continuity of V(r)  and EV, V(r)  the electric energy built up by the normal 
m o a e s ~ f O ~ d  to vanish. The normal modes are self-sustaining, i.e. the electric energy 
(')-lEoD necessary to maintain the electric field externally is compensated by an 
w~ internally, where Eint(u) < 0. 
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The present investigations are based on the electrostatic limit, which excludes an 
&&ve flow .of energy. E ~ ~ ~ ( o ) < O  means that the modes under investigatioD are 
damped exponentially internally, while the ingoing and outgoing flow of enera 
mutually externally. In this long-wavelength limit no effective absorption is left, lo 
order to find the absorption cross section caused by the normal modes we have to 
borrow from electrodynamics: the absorption cross section in the l o n g - w a v e l e n ~ ~  
is @veri by the amplitude c(1, 0) of the dipole contribution to V&) according to 
equation (7) (Me 1908, Born and Wolf 1959). 

3. Separation 

The symmetry of the rectangular parallelepiped implies eight different Symmetry 
characters: the normal modes may be even or odd with respect to a reflection at the 
three central planes x = 0, y = 0, and z = 0. Identifying the polar axis of the spherid 
multipoles with the z axis of the parallelepiped, we note that only spheical multipoles 
PE(,(cos 0) exp(ip4) with even or odd degree m and with even or odd order p interan 
In addition, it is possible to require 

(13) 
The resultant eight subdeterminants are conveniently distinguished by the leading 
multipoles 1, x, y, z, xy, yz, zx, xyz involved. There is one subdeterminant between 
normal modes which transform like the monopole 1, three subdeterminants between 
normal modes which transform like the dipoles x, y, z, three subdeterminants between 
normal modes which transform like the quadrupoles xy, yz, zx, and one subdeterminant 
between normal modes which transform like the octupole xyz on application of the 
symmetry operations of the parallelepiped. 

The symmetry of the cube gives rise to ten different symmetry characters. 
fourfold symmetry around the main axes means that only those spherical multipole 
interact whose orders differ by four. This causes a further separation of each of theeight 
determinants obtained in the case of the parallelepiped into two subdeterminmts. Tfie 
normal modes resulting from the monopole determinant 1 and from the Odupole 
determinant xyz exhibit the full symmetry of the cube even after this separation. ’l’le 
threefold symmetry around the space diagonals thus allows a further separation of the 
resultant subdeterminants into .two. Altogether, we obtain twenty subdetedmff 

c(m, -CL) = *+, p). 

those obtained in the presence of the parallelepiped. A semicolon indicates that the 
next subdeterminants of the cube are derived from the subsequent sub&terminaatd 
the parallelepiped. 

The interaction of spherical multipoles P/”,(cos e) exp(ip4) and P%QS e) eXP(i‘) analyticd’ 
integral with even or odd degree m, n and even or odd order p ,  v only p e d s  @. 

evaluation of all interaction integrals arising in equation (8). m e  basrc 
underlying this integration is the indefinite integral 

[dx 1 dy r-3= z-’ sin~1[xy/(x2+~2)1’2(y2+t2~1’z~ 
(14 

J J  
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w r - = ~ 2 + y 2 + z 2 .  Equation (14) iseasilyverified by differentiationwithrespect to 

I and From equation (14) we obtain all integrals containing a lower power of r by 
meaos of fie reamence relation 

dy r2n-1 = z-'(d/dz) 

Thecorresponding integrals containing higher powers of r can be written (n a 0) 

= [(21)!/2"Z!']z""-"{x(x2+z2)' sinh-'[y/(x2+z2)1/2; 
I=O 

+ y ( y + z sinh-'[x/( y + z 2, 

n-1 n 

1=0 k = I + I  
+ [ ( 2 k ) ! ( k - l ) ! ( k - l - 1 ) ! / 2 2 ' " k ! ( 2 k - 2 1 ) ! ]  

x 2 2 n - 2 k X y [ ( X 2 + Z 2 ) 1 + ( y 2 + 2 2 ) 1 ] ( X 2 + y 2 + Z 2 ) k - ~ - f  

-zzn+ sin-'[xy/(x2 + z2)  '/'(y2 + 2') ' I 2 ] .  (16) 

witb the integrals over all relevant powers of the radius r being known, we obtain the 
iuteraction integrals which contain powers of x 2  and y 2  in addition, by using the 
m e n &  relation 

(17) Wntl)I&/dyx 2k+2 y 21 r 2n-1= [ x ( d / d r ) - ( 2 k + l ) ] ~ d x ~ d y ~ ~ ~ y ~ ~ r ~ " + ' .  

knumber of terms necessary for an explicit representation of the surface integrals (8) 
bgenerally rather high owing to the number of terms included in the Legendre 
POlYnomials Pi(cos e) and Pz(cos e) and the number of terms arising by repeated 
aWkcation of recurrence relations (15) and (17). Collecting these terms is a typical 
"puter task. 

4 Convergence 

Inorder to demonstrate the convergence of the present procedure, in table 1 we give the 
kg terms of the monopole subdeterminant 1 and of the dipole subdeterminant z 

in the case of the cube. In setting up the monopole subdeterminant 1 we used 
&mterdependence of the coefficients c(2m, 4 ~ )  of multipoles of equal degree 2m 
according to 

'zo9* , h 1 ,  which results from the threefold symmetry around the space diagonals. 
'enole from table 1 that the eigenvalue corresponding to the monopole, y = -1, is 

in each order of the interaction. y = -1 also represents the eigenvalue of 
in the presence of a sphere. However, the monopole mode if now 

cwipled a 24-pole, 26-pole, etc. f i e  coupling is strongest in the case of the 2 -pole 
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&decreases rapidly with increasing degree of the poles. The eigenvalue correspond- 
@ to he unperturbed dipole PI(COS 6 )  is = -2/3, which once more equals the 

nvdue of the dipole in the p r e s e y  of a sphere. The dipole mode is now coupled to 
:upole P3(cos 6 )  and to two 2 -poles and thus is shifted towards the monopole 

ne product of corresponding off -diagonal elements (m, p ; n, v) and (n, v; m, p )  in 
subdeterminants shown in table 1 is generally small compared with the product of 

bdiagond elements (my CL ; m, CL) and (n, v ;  n, v). This guarantees rapid convergence 
pe"nits perturbation theory to be applied to all isolated eigenvalues. Since the 

diagonalelements in all subdeterminants exhibit a cluster point at y = -0.5, which is the 
*nv$ue of the normal modes at a half-space, we expect the convergence of the 
eigenvalues to improve with increasing distance from the half-space eigenvalue. 

ne development of the eigenvalue spectrum, if multipoles of increasing degree are 
betinto account, is shown in figure 1. The upper part of figure 1 corresponds to the 
monopole subdeterminant 1, the lower part to the dipole subdeterminant z. The full 

at the left represent the eigenvalues of the unperturbed monopole and dipole, 
respectively. The unperturbed eigenvalues of the next multipoles to be considered are 
ideated by dotted lines. If the coupling to these multipoles is taken into account, we 
obtain the eigenvalue spectrum shown in the next column, and so on. We find an 
iweasing number of eigenvalues to split of€ from the cluster point and note a rapid 
convergence of these isolated levels. In order to obtain the outer dipole levels with 
reasonable accuracy, it is sufficient to take into account the nine multipoles (1,0), (3,0), 
(5,0), (5,4), (7, 0), (7,4), (9, O), (9,4), and (9,8). The next inner eigenvalues converge 
satisfactorily if the multipoles (11, 0), (11,4), (11,8), (13,0), (13,4), (13,8), and 
(13,121 are considered as well. Similar observations are made if the eigenvalues 
d t b g  from the other subdeterminants are considered. 

-1. The strongest coupling is that to the octupole. 

& w e  2 we exhibit the complete eigenvalue spectrum of the normal electric modes at 
a*. Multipoles up to degree 13 are taken into account. This means that the secular 
!*ants under consideration have orders between two and sixteen. For each set of 
Qmlues the symmetry of the respective normal modes and the degeneracy are 
Qdhted. The accuracy of all levels increases with increasing distance from the cluster 
pointy= -0.5. 
, ne different symmetry characters entail several corresponding differences in the 

Wnvalue spectra. The non-degenerate normal modes, which behave like 1 and xyz,  
'pu"" eigenvalues confined to the region -0-5 k y -1. This is also the region of the 
WnvdUes found in the case of spheres, which are shown at the right-hand side. From 
'.mP@ison of the level spectra shown at the left and at the right it appears that the 
*nVdUeS in the case of the cube approach the cluster point according to a reciprocal 
'Q~u to that described by equation (9). The levels resulting from subdeterminant 
'm0batelysatisfy y==(m+1.6)/(2m+1.6); 

?he normal modes ( x 2 - y 2 ) ( y z - z 2 ) ( z 2 - x  ) and xyz (x2 -y2 j (y2 -z2 ) (z2 -x2 ) ,  
*havebeen separated from modes 1 and x y z  on account of the threefold symmetry 
aonnd &e space diagonals, Cause eigenvalues which are confined to the region 
'"yT0. These modes show a vanishing electric field along the diagonal planes of 
'*,W. they are mainly localized within the cube. The principle of equal internal 
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spectra; these are slightly shifted towards r=-O.5 if the minimum &gee of the 
spherical harmonics considered increases. A second set of similar eigenvalue spectla 

mereas changing the parity with respect to the middle planes x = 0, y = 0, = omerely 
results in a small shift of the eigenvalues, a large shift is observed if the parity is changed 
with respect to the diagonal planes x = ky, y = fz, z = fx. 

For reasom outlined in 0 2 we judge the strength of the dipole absorption 
by h e  relative amplitude c(1,O) of the dipole PI(COS 6) .  From the rapid WnVergenR of 

the eigenvalue spectrum shown in figure 1 we conclude that only a few of the 
eigenvalues can exhibit a dipole contribution worth mentioning. The dipole absorption 
peaks at y = -0.793, -0.702, -0660, -0.363 are found to have the relative weiab 
0.60,0-10,0~05,0~25, respectively. The remaining relative weight 0.05 is spread over 
the rest of eigenvalues. This is illustrated in figure 3. 

due to the modes behaving like ( x 2 - y 2 ) ,  z(x2-Y2), xy(x2 -y2 ) ,  and ~ y ~ ( ~ 2 , ~ j .  is 

- 0 7  - 0 5  - 0 3  

Y 

Cint’c ext 

FIgm 3. Dipole absorption peaks. 

In table 2 we compare the findings on the dipole modes according to the hVed@ 
tions discussed here with those obtained by van Gelder el al(1972) and F u C ~  (t974)* 
van Gelder et a1 calculate the eigenvalue a, which is related to Y amreg to 
Y = d 4 r -  1. FwhS calculates the eigenvalue E ,  from which we o b t h  7 amrbg’ 
Y = -e). We include the findings based on the nine spherical mdti@es (11 Olto 
(9,8) and those based on the sixteen spherical multipoles (1,O) to (137 l2). 7% 
eigenvalues reported by van Gelder et al, which were also obtained by f e g  ” tilthe xmm the nine spherical multipoles (1, 0) to (9, S), show poor agreement WI 

fesdh reported by Fuchs and of our own investigations. It is noted that one 
1s split Off on each side of the cluster point. However, fie position of these eigenvdu?s 
less accurate than that resulting from the present procedure if O d Y  two !ppz 
multipoles are taken into account. The findings by Fuchs obtained by OPmg 
P o l e t i o n  charge at 57 non-equivalent points on the surface of the Cube 

agree verg 
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Table 2. Comparison of dipole eigenvalues. 

van Gelder Fuchs Present paper 
etaZ(1972) (1974) 

y=a/41-1 y = €/(l -E) (1,O)to(9,8) (1,0)to(l3,12) 

-0-710 
-0-569 
- 0.525 

-0.519 

-0.507 
-0.504 
- 0.500 
-0.491 
- 0-442 

-0.786 -0.785 
-0.703 - 0.68 1 
-0.655 -0.637 

-0-559 - 0-555 

-0.532 
-0.503 
-0.487 

- 0.438 -0.473 
-0.296 -0.377 

-0.793 
-0.7'72 
- 0.660 
-0.642 
-0.597 
-0.566 
-0.527 

cluster point 
- 0.477 
- 0442 
-0.363 

XU with our own findings in the region y < -0-5; agreement is less satisfactory for 
y>-0-5. This suggests that the normal modes which are mainly localized within the 
eabe are not sufficiently sensitive to variations in the surface polarization charge. 

6. Rechguhr parallelepipeds 

'hetransition from a cube to a rectangular parallelepiped implies a systematic variation 
ofthe surface integrals in secular system (8). The only integrals which are not changed 
arethose containing the monopole (0,O). The diagonal element (0,O; 0,O) equals -1, 
tbe off-diagonal elements (0,O; n, v) equal 0. This means that the monopole mode 
always has the eigenvalue y = -1 or 6,Jeext = -CO. The monopole is coupled to the 
mdtbles, but this does not affect its eigenvalue. 

Alldiagonal elements (m, p;  m, p )  in the secular system (8) are limited to the region 
between the value 0 corresponding to low external fields and the monopole value -1 
corresponding to high external fields. For a parallelepiped with extensions X, Y, 2, the 

term (I, 0; I, 01 equals 

- (2/.rr) tan-'[z(X2 + Y' + z ~ ) ~ ' ~ / x Y J .  (19) 

It approaches the value -1 if the extension along the direction of the dipole becomes 
large So that the energy of the external field must be compensated by the localized 
@%Y gain at the small bases of the parallelepiped, and the value 0 if the extension 
mal to the direction of the dipole becomes large so that the total volume contributes 

internal energy gain. The quadrupole term (2,O; 2,O) equals 

3 xY2[l/(X2 + Z 2 )  + I/( Y* +Z2)1 -1 +- 
7 

'%'roaches -1, if the extension of the parallelepiped in one direction becomes much 
*er than that in the other directions. 

'thincreasing degree m we find that the diagonal elements (m, p;  m, p)  in the 
*Wm (8) approach the limitingvalue -0.5. The value of the surface integral in the 

Of a half-space is its cluster point for any given extension X, Y,  Z of the 



538 D Langbein 

parallelepiped. The shape of the particle under investigation merely a&& the rate of 
the approach to the cluster point. This means that the accuracy of the eigenvalues 
obtained by means of the procedure discussed here increases with increasing distance 
from the cluster point y = -0.5, but decreases when the shape of the particle becomes 
more irregular. 

The explicit eigenvalue spectrum obtained by taking into account all spheical 
harmonics up to degree 10 is shown in figures 4 to 8. Figure 4 exhibits the sequence 
according to which the different spectra have been arranged. We compare paraele- 
pip& with equal base and increasing height. The parallelepipeds denoted by pi to 
p5 have a quadratic base. This sequence represents the transition from a slab to a 
and a rod. The indices P6 to P9 and P10 to P12 denote parallelepipe& with the 
redangular bases 0.4, 1 and 0.1, 1, respectively. 

In f i p e  5 we depict the eigenvalues resulting from subdeterminant 1. & 
respective normal modes exhibit the full symmetry of the parallelepiped, They are 
coupled to the monopole mode, but do not have a monopole component themselves. ~f 
one pair of faces of the parallelepiped is quadratic, they can be subdivided into modes 
which acquire a factor +1 or -1 on rotation by $T around the tetragonal axis. '&e 
eigenvalues corresponding to the symmetry character - 1 are denoted by broken lines. 
mey can be seen to increase with increasing height 2 of the parallelepiped in the 
sequence P1 to P5, whereas the eigenvalues corresponding to the symmetry character 

P I 0  

tQ 

P 6  

0 
P I  

P 11 P I 2  

P7 P 8  

el3 P2 P 3  

c P 9  

PL 

Figure 4. Sequence of parallelepipeds. 
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P I  P 2  P 3  P L  P 5  P 6  

- - - - - - ,  

"e 5. Monopole eigenvalues. 

639 

-1 I4 

-1 12 

- 1  

c 
X 
Q, . 
c 
C .- 

W 

- 2  

- L  

. C O  

+1havea maximum in the case of the cube P3. In the case of the rod P5, the two level 
are fully separated. The levels corresponding to -1 lie above y = -0-5, those 

fD"eSp0nding to +l lie below 7 = -0.5. We found a similar separation of level spectra 

are 
pfokd+ We have turned the direction of all dipoles to the z direction and have changed 
meonenWion of the parallelepiped accordingly. Within each of the sequences P1 to 
!1p6tQpg, and P10 to P12 we find a tendency of the eigenvalues to approach -1 with 

height 2. This agrees with the tendency of the diagonal element (1,o; 1,o) 
bdingto equation (19). However, because of the cluster point at -0.5, the highest 
'le eigenvalue is merely shifted from 0 to - 0.5 and the lowest dipole eigenvalue is 
beb' shifted from -0.5 to - 1. This shift of eigenvalues with increasing height 

less Pronounced as the base of the parallelepiped becomes more elongated. 
eFenvahe exhibiting maximum dipole absorption strength essentially follows the 

%Rowofthe diagonal element (1,O; 1, O), i.e. it moves from 0 to - 1 withincreasing 

of the cube. 
In fiwe 6 the dipole eigenvalues resulting from subdeterminants x, Y, and 

bt 2. 
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JTIgme 8. Octupole eigenvalues. 

The fact that in the vicinity of the cluster point -0.5 no eigenvalues at all are 
obtained for some elongated shapes may be attributed to the slow convergence Of the 
diagonal elements to the cluster point in these cases. If the base of the parallelepipdb 
quadratic, i.e. in the sequence P1 to P5, it is again possible to distinguish betweenmods 
which acquire a factor +1 or -1 on rotation by &T around the tetragonal axis. ne 
eigenvalues corresponding to the latter symmetry character have zero dipole abF 
tion strength. They are essentially octupoles and show a minimum as a functionofthe 
height Z rather than a monotonic decrease. 

The findings obtained for monopole and dipole modes hold in an analogousmanner 
also for quadrupole and octupole modes. The quadrupole eigenvalues resulting from 
secular determinants xy,  yz, and zx have a tendency to increase with increask3heightZ 
of the parallelepiped, as does the quadrupole diagonal element (2,O; 2,')) mcd@' 
equation (20). Roughly, we may consider the quadrupole and octuple eigenvalue 
spectra as inversions of the dipole and monopole eigenvalue spectra at the cluster point 
-0.5. 
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of the interaction matrix between the multipoles under consideration can 
be calculated analytically. Although this generally requires a large number of polyno- 

only a few terms are left in the leading diagonal elements which cause the 

eigenvalues of the normal modes are necessarily confined to the region 
03.3 - I which corresponds to the region 0 3 E ~ , , ~ / E , , ~  3 -CO. The internal and the 
efiemal dielectric permeabilities must have opposite signs so that the energy needed to 
build the externd electric field is made up by an internal energy gain, or vice versa. 

dmgingthe extensions of the parallelepiped. A short extension in the direction of the 
*le favours an eigenvalue close to 0. In that case there is relatively little interaction 
kfi between the polarization charges on the faces normal to the direction of the dipole 
@&atchanging the sign in some distant regions hardly affects the resulting eigenvalues 
ad nearly degenerate eigenvalues arise. The main quadrupole eigenvalue in the case of 
he upright slab P12 lies very close to the main dipole eigenvalue in the case of the 
horizontal slab P1. Similar to the case of spheres we find a cluster point of eigenvalues at 
he half-space value -0.5. However, the eigenvalues close to the cluster point do not 
&!rise to optical absorption peaks. Their dipole component is generally very small. 

The cube is the most probable shape of small rectangular particles. It has the 
advantage that it needs the minimum number of spherical harmonics to provide 
convergence, and its symmetry allows a further reduction of the resultant secular 
determinants. We find only small deviations between the eigenvalue spectra corres- 
ponding to the symmetry characters z, xy, and xyz, which again indicates that there is 
only little interaction between polarization charges at distant surface regions of the 
rube. On the other hand, there arises a strong effect on the eigenvalue spectra if the 
im~almodes exhibit an additional factor x 2 - y 2 .  This factor means that the electric 
field vanishes along the diagonal planes x = ky, which reduces the energy of the 
external multipole fields and shifts the eigenvalue spectra towards 0. If the normal 
modesexhibit the factor ( x 2 -  y2)(y2-z2)(z2-x2),  i.e. if the electricfieldvanishesalong 

diagonal planes, we find the eigenvalue spectra fully confined to the region between 
hebulk value y =  0 and the half-space value y = -0.5. 

peaks. 

%main dipole absorption peak may be shifted through the full region 0 3 y 3 - 1 by 

%study was sponsored by Battelle Institute, Columbus, Ohio, under Grant Number 
333-302. 
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